
Summarizing the results, we draw =he following conclusions. In the experimental inves- 
tigation of heat-transfer processes on the basis of a limited volume of initial data it is 
possible to determine simultaneously a set of parameters that do not violate the one-to-one 
correspondence with given observations. The experimental assurance of the conditions neces- 
sary for this objective permits the specific heat and thermal conductivity to be determined 
simultaneously without using volume heat sources, or likewise the thermophysical properties 
and transient boundary heat fluxes, and additionally the heat-transfer coefficient to be re- 
constructed. What this means in practice is the possibility of enlarging the volume of in- 
formation obtainable in the interpretation of experimental results by conventional methods. 
It must also be borne in mind that among the solutions of the heat-conduction equation there 
exists a Subset that imparts ambiguity to the determination of the coefficients of the mathe- 
matical model. The existence of that subset is attributable to the invariant properties of 
the solution of the boundary-value problem with respect to its coefficients. The resulting 
necessary conditions for the existence of an unidentifiable temperature field can be applied 
directly in practice. 

NOTATION 

x, space coordinate; t, time; QT, domain of independent variables; T, upper time limit; 
a,, specific heat; az, thermal conductivity; aa, heat-transfer coefficient; f, power of volume 
heat sources; ~ , initial temperature distribution; vo,~, boundary functions; q, qo, q~, heat 
flux; u, temperature field; u*, unidentifiable state; 1~,2, P, 01, 02, parameters of family 
from ambiguity subset; C ~, C 2, C2'*,,classes of differentiable functions. 
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MATHEMATICAL SIMULATION OF THERMOGRAVITATIONAL CONVECTION 

IN SOLIDIFICATION OF LIQUID STEEL 

Yu. A. Samoilovich, L. N. Yasnitskii, 
and Z. K. Kabakov 

UDC 536.25:621.746 

The thermal and hydrodynamic phenomena accompanying crystallization of liquid steel 
are analyzed numerically. 

It is well known that the major portion of defects in castings develop during the phase 
transition of the alloy from the liquid to the solid state. Direct experimental study of the 
thermal and especially the hydrodynamic phenomena accompanying the steel crystallization pro- 
cess is difficult because of the thermal and chemical aggressiveness of liquid steel. Thus, 
the role of mathematical simulation becomes important in study of this process. 

Metallic alloys are inclined to produce dendrite forms of crysnal growth, leading to 
formation of a two-phase zone which is a mixture of liquid alloy and branches of the growing 
dendrites. Thus, within the solidifying alloy one can always distinguish three regions with 
different aggregate metal states -- a zone of completely solidified metal, a zone of liquid 
alloy, and a two-phase zone separating the former ones (Fig. i). 
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Fig. i. Diagram of alloy solidificagion: s) solid alloy 
region; 7) liquid region; I + s) two-phase zone. H, K, S, 
M, N) regions of alloy described by Hooke, Kelvin, Shvedov, 
Maxwell, and Newton rheological models. Below, alloy motion 
through two-phase zone. 

Motion of the unsolidified metal takes place in both the liquid and the two-phase regions 
of the casting, although the flow regime in those two regions differ significantly, l~ile 
in the liquid region the melted metal is free of crystallized particles and its behavior, 
judging from numerous ezperimental results [1-4], can be described satisfactorily by the equa- 
tions of motion of a Newtonian liquid, in the two-phase zone free motion of the liquid is 
hindered by a network of growing dendrites, and the physical properties of the melted metal 
change because of the large number of suspended solid particles. In addition, we must con- 
sider that the flow in the two-phase region takes place under complex conditions of shrinkage 
in the crystallizing metal and formation of shrinkage pores. This all places the solidifying 
alloy in the two-phase zone in a partially stressed state and causes the alloy to manifest 
elasticity and compressibility properties which are not described by the Navier--Stokes law. 
Naturally, the concept of a Newtonian liquid loses force under these conditions, and the 
equations of motion of the alloy must consider its rheological properties. 

The solidifying metal has been represented by a number of rheological models [2, 5-7]. 
The completely solidified portion of the casting, cooled to temperatures below 800-900~ 
can to a great degree of accuracy be considered and absolutely elastic body, which follows 
the classical Hooke's law. In the unsolidified portion, in the presence of only slight super- 
heating, the behavior of the liquid metal is described satisfactorily by Newton's viscous 
friction law. Between these two limits the ~ehaviorof the solidifying metal passes through 
an entire spectrum of states from a Newtonian body to a Hooke body, as sho~ schematically 
in Fig. I. 

Depending on the particular problem under investigation, researchers accent one or the 
other rheological model of the metal. For example, study of the stressed state of the solid 
shell of a casting in connection with the development of clod cracks is performed using the 
theory of elasticity. In analysis of hot crack formation [5], a model proposed by Kashirtsev 
[6] has been used, which in dependence on the intensity of loading can degenerate into an 
elastic Hooke body, a viscoelastic Maxwell liquid, or a pl~stic Shvedov body. Finally, to 
describe convective phenomena in the liquid core of a casting the differential equations of 
the hydrodynamics of a viscous incompressible Newtonian liquid have been used [8-15]. 

Choosing the goal of analyzing the conditions of interaction between the ~wo-phase zone 
and the convective flow of the alloy within the liquid core of the casting, we take as a work- 
ing hypothesis that the behavior of the two-phase zone can be described by Maxwell's visco- 
elastic liquid model. It is obvious that this hypothesis is sufficiently accurate for that 
portion of the two-phase zone adjoining the two-phase zone -- liquid metal boundary, where 
=he solidifying alloy is in intense motion and the properties of viscoelasticity are dominanL 

The differential equation for the motion of a Maxwell liquid can be derived by using the 
equations of the dynamics of continuous media [16, p. 62]. 

DV 
p ~ = OF q- Div P. (1) 
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We differentiate Eq. (i) with respect to time and multiply both sides by the constant 
TR, which defines the relaxation time of the medium: 

Dp DV DW ='rR F Dp DF ( DP) 
,'r R De: D'~ + zRp Oz---~ - ~  +'r~ ~ -  + Div ~e ~ " (2) 

\ ] 

Combining Eqs. (I) and (2), we obtain 

DV DW I D o DV DP 
P-D-~-~ + ' ~ - ~ z  ] § D'~ --=PD~ F + ~ R  ~ '~TRF ~ + D i V D x  P + T R  ~ . (3) 

We define the relationship between the stress tensor P and the deformation rate tensor 
by a generalized theological Maxwell law, written for an isotropic compressible medium: 

DP ( Dp 2 VIE.  P+TR Dz = 2~S-- p+x R ~ + - ~ -  ~div (4) 

After substitution of Eq. (4) in Eq. (3), we obtain 

(DV D2V ~+ z n DO (F + z~ DF) Dp 

--V IP+~R Dp +(V~W) V 2 dV - -  - -  . 3 w(vV)+ w (5) 

Equation (5) is the hydrodynamic equation of a viscoelastic compressible liquid. In 
the special case in which T R = 0, div V=0, and ~ = const, Eq. (5) transforms to the equation 
of motion of a viscous incompressible Newtonian liquid [16, p. 362]. The most significant 
difference between the equation obtained here and the equation of motion of a Newtonian liquid 
is the presence of the second derivative of velocity with respect to time, which gives the 
equation of hyperbolic form. This imposes corresponding unique features upon the character 
of the nonstationary solutions obtainable. 

We will analyze Eq. (5) for the one-dimensional case of liquid metal motion within the 
limits of a two-phase zone of thickness L, as depicted in Fig. i. Neglecting the derivatives 
of the flow velocity along all coordinates except x, and also changes in pressure and density, 
we obtain the equation for transfer of quantity of motion in the form 

In solving nonstationary differential equation (6), one must specifiy certain initial 
velocity and acceleration values, for example: 

Vz=O ' #Vz --0 at T=0. (7) 
0r 

On the boundaries of the two-phase zone boundary conditions for the velocity are specified: 

V .... 0 at x = 0 and Vz = Vm at x = L. (8) 

We take the change in the viscosity coefficient ~ over the thickness of the two-phase 
zone in the form of a power series in the parameter ~: 

V =  ~o X AnOn" (9) 
n=0 

When the first two terms of series (9) are used, we obtain the well-known Einstein ex- 
pression, valid for weakly concentrated suspensions: 

= ~o(1 + 2,5~). (10) 

However, as  was no ted  by Leonova [7] ,  Eq. ( I0)  does no t  agree  wi th  expe r i men t a l  da ta  on 
the properties of solidifying melts. Data are presented in [5] on the distribution of effec- 
tive viscosity in the two-phase zone of an alloy AI, + 0.6% Si, which can be approximated with 
sufficient accuracy by the polynomial 

= ~0(I + 2,5~ + AW~). (ii) 
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Fig. 2. Flow velocity vs time at two-phase zone point x = 
0.075 m for various relaxation times: I) T R = 0; 2) 50; 3) 
I00. A = 250. 

Fig. 3. Stationary distribution of velocity in two-phase zone 
for various A in viscosity distribution law (II): I) A = 0; 
2) 250; 3) I000; 4) i0,000. 

The coefficient A in Eq. (Ii) characterizes the increase in viscosity upon transition 
of the alloy from the liquid to the solid state. 

It follows from analysis of experimental data [6, 7, 17] that the effective viscosity 
coefficient depends to a great degree on the chemical composition of the alloy, as reflected 
in a change in A from 240 to I0,000. 

Numerical integration of differential equation (6) with specified boundary conditions 
(7), (8) and viscosity distribution law (ii) was carried out by the finite difference method 
using the Dufort--Frankel technique [18]. Calculations were performed for the following ini- 
tial parameter values: ~o = 4.2"10 -s N'sec/m2; O = 7"i0 a kg/mS; L = 0.i m. 

Figure 2 depicts the process of establishment of a stationary flow regime with variation 
of the relaxation time (TR). The control parameter chosen was the flow velocity (V z) at a 
point within the two-phase medium located a distance of I/4L from uhe liquidus boundary. As 
follows from =he figure, with increase in the parameter T R the time required for establishment 
of a stationary flow regime in the Maxwell liquid increases. 

Figure 3 shows the stationary velocity distribution in the two-phase zone for various 
values of the coefficient A in the viscosity distribution law (II). As is evident from the 
figure, the flow velocity of the solidifying metal in the two-phase zone falls off abruptly 
near the liquidus boundary and then tends smoothly toward zero with approach to the boundary 
x = 0. 

The results obtained on liquid metal behavior in the two-phase zone can be used to formu- 
late boundary conditions for study of hydrodynamic phenomena in the l~quid core of the solidi- 
fying casting. To do =his we introduce the concept of an arbitrary solidification boundary, 
commencing from the concept that beyond the limits of this boundary the displacement rate of 
the melt comprises a relatively small fraction ~ of the maximum perturbed flow velocity Vm, 
i.e., Vz~ V,, where V, = eV m. Choosing, for example, e = 0.05, we find from Fig. 3 that the 
solidification boundary is determined by the coordinate X, = 0.7 - 0.8. In the region X, < 
X < 1 the melt displacement rate exceeds the critical value V,. 

It should be noted that the solidification boundary defined here is equivalent to the 
concept of a pourability boundary introduced by Gulyaev [19]. The experimental data of [19], 
obtained by turning over partially solidified castings of an iron alloy, indicate that the 
pourability boundary occurred at the value ~ = 0.3, so that X = 1 -- P = 0.7, which coincides 
with the solidification boundary obtained in our calculations. 

The analysis performed justifies division of the two-phase zone of the casting into two 
regions separated by a pourability (solidification) region. Within the limits of region 1 
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(Fig. 3) within the limits of region I (see Fig. 3) the liquid flow velocity decreases mono- 
tonically from V m to V, = 0, while in region II motion of the melt can be neglected in prac- 
tice. Thus we have a two-element description of the two-phase zone, which permits use of 
the differential equations of a Newtonian liquid for description of the motion of the un- 
solidified metal over the entire region in the casting where the temperature is above the 
pourability temperature (T > TE). On the pourability boundary we must require the adhesion 
condition 

V = 0  at T :  T e .  (12)  

After these preliminary remarks, we now turn to formulation of the combined problem of 
the hydrodynamics and heat exchange of the solidifying metal, which requires simultaneous 
solution of the following differential equations. 

i. The heat-transfer equations for the liquid, solid, and solid-liquid states of the 
alloy, written with consideration of heat liberation due to phase transition in the liquid-- 
solidus temperature interval (TZ -- T s) 

o-7- + a--T = k + ) " (13) 

Here Cef is the effective specific hea~ which is specified as a function of alloy temperature 
in accordance with the technique of calculating heat of crystallization inthe two-phase zone 
[15]. 

2. The system of Navier--Stokes hydrodynamics equations, written in the Boussinesq ap- 
proximation: 

+ aV. i Op , ( ~ a% ) (14) 
a.c &x + v~ az o ax -t- \ ax 2 + ~ z  2 / ,  

OVz av, ov, I ap (' a2v~ a2v, 1 + g6 ( r  - -  T e l  (15) 
O----~ + V" ~ + V, az = p az + ' :  \ Ox ~ + Oz z ) 

OVx avz = 0 (continuity equation). (16)  
ax + a--z- 

The algorithm used to solve the equations is constructed so that Eqs. (14)-(16) are 
solved simultaneously with thermal conductivity equation (13) in that portion of the casting 
in which up to the given time the temperature has not yet fallen to the pourability tempera- 
ture (T > TE). In the portion of the casting in which crystallization has begun, where the 
temperature is below the pourability temperature (T~T E) only the thermal conductivity equa- 
tion (13) is solved; the velocity field is assumed equal to zero. Thus, on the crystalliza- 
tion front fixed by the pourability isotherm (T = TE) , the position of which is determined 
at any time by a combination of thermal and hydrodynamic circumstances, adhesion condition 
(12) is satisfied. 

In the numerical realization of these differential equations, an approach was employed 
which is sometimes termed the artificial compressibility method [20]. In accordance with 
this technique, in the computation algorithm continuity equation (16) is formally replaced by 
the equation 

( " ova,, a P . + n p  = at k ax +-~z ) O, (17) 

in which the parameter np is chosen during the calculation process. This approach presumes 
organization of an additlonal iteration process at each time layer, as a result of which a 
pressure field and corresponding velocity field are defined, which approximately satisfy con- 
tinuity equation (16). 

Numerical integration of differential equations (13)-(17) was accomplished by the finite- 
element method [21, 15], in which the calculation region is covered by a grid consisting of 
triangular elements, and the desired functions are repesented by linear functions of the co- 
ordinates wlthineach element. The algorithm for numerical integration of these equations 
by the finite element method using the artifical compressibility technique, smoothing over 
space and averaging in time, was described in deKail in [15, 21, 22]. 

330 



7 I i I ~ t ! I ~ ~ ' l f ' ; 

.~50 L ~ __J ~ ~ v E ~ v ~ v [ 
a b c d e 

Fig.  4. Flow f u n c t i o n  i s o l i n e  p a t t e r n s  (above) 
and l o n g i t u d i n a l  v e l o c i t y  V z and t empera tu re  T 
p r o f i l e s  fo r  t imes :  a) �9 = 600 see;  b) 900; c) 
1800; d) 3600; e) 5400. S o l i d i f i e d  meta l  r eg ion  
i s  c r o s s - h a t c h e d .  Vz, m/see ,  T, ~ 

In the calculations presented below, the following physical characteristics were used 
for carbon steel: T l 1781~ T = 1723~ T E = 1763~ c I = 800 J/(kg.deg K), c s = 660 J/ 

=s29 W/(m'deg K), 8 = 0.17"10 -~ deg K-I~ 9 = 0.6 i0 -6 m2/see. (kg'deg K),o~f. = 272,000 J/kg, l 

The mathematical model described was used to study the process of solidification of a 
casting of most simple form -- a plate with distance between the wide edges 2S = 0.3 m and 
height H = 1.8 m, cast in a sand--clay form. The upper head portion of the casting with h = 
0.6 m was surrounded by a thermal insulation mixture. 

It is known from experiment that in the initial period of cast crystallization the sur- 
face temperature falls abruptly, and then remains constant during practically the entire so- 
lidification process. Therefore, as boundary conditions on that portion of the casting sur- 
face in contact with the sand--clay form, we choose a constant temperature T~ = 1673~ while 
on the portion in contact with the thermal insultation, T2 = 1723~ 

At the initial moment the alloy in the calculated region is assumed at rest with an ini- 
tial temperature, constant over volume, of To = 1803~ 

V~=0,  ~ = 0 ,  T = T ~  at T = 0 .  (18) 

The r e s u l t s  o f  c a l c u l a t i n g  the  the rmal  and hydrodynamic q u a n t i t i e s  a re  p r e s e n t e d  in  Fig .  
4 in the form of flow function isolines and vertical velocity component profiles in a middle 
cross section of the casting at various times. As is evident from the figure, the liquid 
metal sinks at the side walls of the casting and rises in the central portion with formation 
of two circulation contours. Such a pattern of thermogravitational convection in solidifica- 
tion of steel was described in [8-14]. Less well known is the fact of formation within the 
circulation contours of a series of fine vortices which appear and disappear during the pro- 
cess of reduction in size of the liquid casting core. Of interest is the order which appears 
in Khe vortex positions, which we may arbitrarily s "chessboard" orde~ 

Liquid flow with chessboard vortex configuration is a phenomenon observed frequently 
in nature (for example, the Karman vortex path). In [23] observations of turbulent liquid 
motion on the boundary between meeting flows was described: the vortex formations arrange 
Khemselves in chessboard order, despite the symmetrical conditions under which the experi- 
ment was performed. The develgpment of asymmetrical chessboard motion of the liquid in the 
present case can be explained by the fact that the symmegrieal flow pattern existing in =he 
initial stage of the process loses its stability under the action of random perturbing factors 
(vibrations, channel wall roughness), and transforms to an energe=ieally more favorable asym- 
metric pattern. 
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A similar situation occurs in the mathematical simulation: with absolutely symmetric 
boundary conditions, computer solution of the problem shows rearrangement of the flow lines 
into the asymmetricalchessboard pattern. Such a pattern was observed, for example, by Yakimov 
[24], who utilized rounding errors at the points of the finite-difference grid as the perturb- 
ing factor. The appearance of chessboard structure in vortex locations in a vertical channel 
was established analytically by Gershun and Zhukhovitskii [25]. 

In the present study our mathematical simulation has found formation of a chessboard 
structure in the liquid steel convection during solidification of the casting. The fact that 
this phenomenon has not been observed in similar theoretical studies [9-15] can be explained 
by the fact that hydrodynamic field symmetry was always imposed about the casting axis, eli- 
minating asymmetrical liquid convection forms. 

It should be noted that the phenomenon of vortex formation in the liquid core of a cast- 
ing has a direct relationship to the process of segregation of impurities and formation of 
chemical inhomogeneities in the cast metal. In particular, the vortices stimulates additional 
mixing of the liquid, intensifying heat and mass transfer in the horizontal direction. More- 
over, impurities and nonmetallic inclusions are attracted into the rarefied zone formed by 
the rotating metal and accumulate in the central portion of the vortices. 

In analyzing Fig. 4 one notes that despite the complex character of the convection, the 
profile of the vertical component of the velocity vector in the central cross section has a 
simple symmetrical form, which can be approximated by the following expression with satisfac- 
tory accuracy: 

= , O ~ x ~ b ,  n = 2 .  (19) 

Equation (19) can be used to develop simplified methods for calculating metal solidifica- 
tion. 

Thus, by solving the combined problem of heat exchange and hydrodynamics, new informa- 
tion has been obtained on the character of metal motion in the liquid core of a solidying cast- 
ing. The phenomenon of formation of a series of vortices within the overall circulation con- 
tours has been established. The vortices are arrayed in a "chessboard" order. An equation 
has been proposed for description of the longitudinal velocity profile in the central section 
of the casting. 

NOTATION 

x, y, planar Cartesian coordinates; T, time; T, alloy temperature; Vx, Vy, horizontal 
and vertical components of velocity V; 0, ~, Cef, ~, ~, B, density, thermal conductivity, 
effective specific heat, kinematic and dynamic viscosities, thermal expansion coefficients; 

g = 9.8 m/see u, acceleration of gravity; p, pressure; T l, T s, T E, liquid, solidus, and pour- 
ability temperatures; c l, c s, specific heats of liquid and solid alloy phases; L, specific 
heat of crystallization; 2S, H, casting thickness and height; h, mold head height; Vo, as- 
cending flow velocity on casting axis (at x = 0); b, thickness of casting liquid core; F. 
volumetric force distribution density; P, S, stress and deformation rate tensors; T R, Maxwell 
liquid relaxation time; E, tensor unit; ~, relative quantity of solid phase in elementary 
melt volume; e, dimensionless temperature; X, dimensionless coordinates; L, thickness of two- 
phase zone; nr, relaxation parameter. 
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